![]() | K | dz z | = | ![]() | 2![]() | logx/x[n] r eit r eit | dt = 2 ![]() |
---|
função complexa com as sequências Graceli.
f´[sG log d/d [n...]*p[n..]* [w/√ [n..]* ]* [sG y / √ [n...] ] *p[n..]*[w/√[n..] = df / d [sG log d/d [n...]*p[n..]* [w/√ [n..]* ]* [sG y / √ [n...] ] *p[n..]*[w/√[n..].
sistema multi matemático Graceli. onde temos numa mesma função diferenciais, integrais, matriz, estatística, e geometria oscilatória Graceli.
p= progressão.
p [n..]* [w/√ [n..]
[sG log d/d [n...]*p [n..]* ]* [sG y / √ [n...] ]
p[n..]* [w/√ [n..]
[sG log d/d [n...]*p[n..]* [w/√ [n..]* ]* [sG y / √ [n...] ]
[sG log d/d [n...]*p[n..]* [w/√ [n..]* ]* [sG y / √ [n...] ] *p[n..]*[w/√[n..]
exemplo para área de esferas.
* [sG log d/d [n...] ]* [sG y / √ [n...] ] *
* [a R, 0 -R].
[sG log d/d [n...]*p[n..]* [w/√ [n..]* ]* [sG y / √ [n...] ] *p[n..]*[w/√[n..]
p= progressão.
p [n..]* [w/√ [n..]
[sG log d/d [n...]*p [n..]* ]* [sG y / √ [n...] ]
p[n..]* [w/√ [n..]
[sG log d/d [n...]*p[n..]* [w/√ [n..]* ]* [sG y / √ [n...] ]
[sG log d/d [n...]*p[n..]* [w/√ [n..]* ]* [sG y / √ [n...] ] *p[n..]*[w/√[n..]
exemplo para área de esferas.
.jpg)

.jpg)
para cada sequência de log é multiplicável por uma sequência √ou todas.
no caso de uma temos ponto como se fosse uma tangente, e se for para todas temos uma integral.
e se for de todas de log, por todas de √, temos matrizes,e formas geométricassobre formas geométricas.
QUARTA-FEIRA, 28 DE MAIO DE 2014


Com log,
√
, e ondas temos uma função que é composta de várias tangentes em cada curva da onda, em momentos e pontos diferentes e alturas diferentes.
E sem ondas temos uma curva com uma só concavidade. Ou seja, uma só curva.
E temos um sistema de pontos de cada sequência onde temos as diferenciais.
Mas, no conjunto de pontos temos as integrais.
Ou seja, é um sistema infinitesimal onde a própria função é diferencial e integral ao mesmo tempo.
Onde o importante é o caminho sequencial, e não o resultado final.
Logx/x [n...] ou [y] *[/] [+] [-] h/
√
[n...]
Logx/x [n...] ou [y] *[/] [+] [-] h/
√
[n...]* ondas [lambda].
Logx/x [n...] ou [y] *[/] [+] [-] h/
√
[n...]* ondas [lambda] * [a, R, 0]
ordem das sequencias Graceli.
a sequencia de logx/x [n...] determina que em cada divisão temos valores para aquela ordem sequencial divisória.
[sG log d/d [n...]
o mesmo acontece com as raízes quadrada e elevada a três [3], onde conforme se vai dividindo temos valores por ordem sequencial.
[sG y / √ [n...]
onde cada sequência multiplicável por todas as sequências sequintes temos as matrizes sequenciais Graceli.
a sequencia de logx/x [n...] determina que em cada divisão temos valores para aquela ordem sequencial divisória.
[sG log d/d [n...]
o mesmo acontece com as raízes quadrada e elevada a três [3], onde conforme se vai dividindo temos valores por ordem sequencial.
[sG y / √ [n...]
onde cada sequência multiplicável por todas as sequências sequintes temos as matrizes sequenciais Graceli.
geometria quântica sequencial Graceli.
+ [sG log d/d [n...] ]* [sG y / √ [n...] ] *
* [a R, 0 -R] * a,l, l,
com geodésicas.
+
+ [sG log d/d [n...] ]* [sG y / √ [n...] ] *
* [a R, 0 -R] * a,l, l,


com geodésicas.



geometria matrial Quântica Graceli.
[sG log d/d [n...] ]* [sG y / √ [n...] ] *
* [a R, 0 -R] * a,l, l,
all = altura, longitude, latitude.
[sG log d/d [n...] ]* [sG y / √ [n...] ] *
* [a R, 0 -R] * a,l, l,
+ [sG log d/d [n...] ]* [sG y / √ [n...] ] *
* [a R, 0 -R] * a,l, l,
[sG log d/d [n...] ]* [sG y / √ [n...] ] *

all = altura, longitude, latitude.




geometria oscilatória e matricial Graceli.
exemplo de geometria oscilatória Graceli para esferas.
* log d/d [n...] * [a R, 0 -R].
d = diâmetro.
a = alternância entre números reais positivos e negativos e zero.
* log d/d [n...] * y / √ [n...] * [a R, 0 -R].
* [sG log d/d [n...] ]* [sG y / √ [n...] ]* [a R, 0 -R].
sG = sequência Graceli.
estas variáveis oscilatórias podem ser usadas para volumes, lados, catetos, hipotenusa, e outras formas como triângulos, retângulos, etc.
geometria matricial Graceli.
onde cada sequencia leva a um resultado em certos instante e valor conforme a sequência em questão.
* [sG log d/d [n...] ]* [sG y / √ [n...] ]* [a R, 0 -R].
exemplo de geometria oscilatória Graceli para esferas.
.jpg)
d = diâmetro.
a = alternância entre números reais positivos e negativos e zero.
.jpg)
.jpg)
sG = sequência Graceli.
estas variáveis oscilatórias podem ser usadas para volumes, lados, catetos, hipotenusa, e outras formas como triângulos, retângulos, etc.
geometria matricial Graceli.
onde cada sequencia leva a um resultado em certos instante e valor conforme a sequência em questão.
.jpg)
Nenhum comentário:
Postar um comentário